
2

2.1

2.1.1 https://gateoverflow.in/8084

2.2

2.2.1 https://gateoverflow.in/553

2.2.2 https://gateoverflow.in/579

A. object code generation B. literals added to literal table
C. listing printed D. address resolution of local symbols

2.2.3 https://gateoverflow.in/578

2.2.4 https://gateoverflow.in/2294

Compiler Design (186)

Lexical analysis, Parsing, Syntax-directed translation, Runtime environments, Intermediate code generation.

Abstract Syntax Tree (1)

Abstract Syntax Tree: GATE2015-2-14

In the context of abstract-syntax-tree (AST) and control-flow-graph (CFG), which one of the following is TRUE?

A. In both AST and CFG, let node be the successor of node . In the input program, the code corresponding to is
present after the code corresponding to

B. For any input program, neither AST nor CFG will contain a cycle
C. The maximum number of successors of a node in an AST and a CFG depends on the input program
D. Each node in AST and CFG corresponds to at most one statement in the input program

gate2015-2 compiler-design easy abstract-syntax-tree

Assembler (7)

Assembler: GATE1992-01,viii

The purpose of instruction location counter in an assembler is _______

gate1992 compiler-design assembler normal

Assembler: GATE1992-03,ii

Mention the pass number for each of the following activities that occur in a two pass assembler:

gate1992 compiler-design assembler easy

Assembler: GATE1992-3,i

Write short answers to the following:
(i). Which of the following macros can put a macro assembler into an infinite loop?

.MACRO MI,X

.IF EQ,X
M1 X+1
.ENDC
.IF NE,X
.WORD X
.ENDC
.ENDM

.MACRO M2,X

.IF EQ,X
M2 X
.ENDC
.IF NE,X
.WORD X+1
.ENDC
.ENDM

Give an example call that does so.

gate1992 compiler-design assembler normal

Assembler: GATE1993-7.6

A simple two-pass assembler does the following in the first pass:

A. It allocates space for the literals.
B. It computes the total length of the program.
C. It builds the symbol table for the symbols and their values.

76 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/questions/compilers
http://gateoverflow.in/tag/lexical-analysis
http://gateoverflow.in/tag/parsing
http://gateoverflow.in/tag/syntax-directed-translation
http://gateoverflow.in/tag/runtime-environments
http://gateoverflow.in/tag/intermediate-code
https://gateoverflow.in/tag/Abstract+Syntax+Tree
https://gateoverflow.in/8084/gate2015-2-14
https://gateoverflow.in/8084
https://gateoverflow.in/tag/gate2015-2
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/easy
https://gateoverflow.in/tag/abstract-syntax-tree
https://gateoverflow.in/tag/Assembler
https://gateoverflow.in/553/gate1992-01-viii
https://gateoverflow.in/553
https://gateoverflow.in/tag/gate1992
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/assembler
https://gateoverflow.in/tag/normal
https://gateoverflow.in/579/gate1992-03-ii
https://gateoverflow.in/579
https://gateoverflow.in/tag/gate1992
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/assembler
https://gateoverflow.in/tag/easy
https://gateoverflow.in/578/gate1992-3-i
https://gateoverflow.in/578
https://gateoverflow.in/tag/gate1992
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/assembler
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2294/gate1993-7-6
https://gateoverflow.in/2294
https://gateoverflow.in

2.2.5 https://gateoverflow.in/2513

2.2.6 https://gateoverflow.in/2514

2.2.7 https://gateoverflow.in/2721

A. B. C. D.

2.3

2.3.1 https://gateoverflow.in/410

2.3.2 https://gateoverflow.in/1784

D. It generates code for all the load and store register instructions.
E. None of the above.

gate1993 compiler-design assembler easy

Assembler: GATE1994-17

State whether the following statements are True or False with reasons for your answer:

A. Coroutine is just another name for a subroutine.
B. A two pass assembler uses its machine opcode table in the first pass of assembly.

gate1994 compiler-design normal assembler

Assembler: GATE1994-18

State whether the following statements are True or False with reasons for your answer

A. A subroutine cannot always be used to replace a macro in an assembly language program.
B. A symbol declared as ‘external’ in an assembly language program is assigned an address outside the program by the

assembler itself.

gate1994 compiler-design normal assembler true-false

Assembler: GATE1996-1.17

The pass numbers for each of the following activities

i. object code generation
ii. literals added to literal table

iii. listing printed
iv. address resolution of local symbols that occur in a two pass assembler

respectively are

gate1996 compiler-design normal assembler

Code Optimization (4)

Code Optimization: GATE2008-12

Some code optimizations are carried out on the intermediate code because

A. They enhance the portability of the compiler to the target processor
B. Program analysis is more accurate on intermediate code than on machine code
C. The information from dataflow analysis cannot otherwise be used for optimization
D. The information from the front end cannot otherwise be used for optimization

gate2008 normal code-optimization compiler-design

Code Optimization: GATE2014-1-17

Which one of the following is FALSE?

A. A basic block is a sequence of instructions where control enters the sequence at the beginning and exits at the end.
B. Available expression analysis can be used for common subexpression elimination.
C. Live variable analysis can be used for dead code elimination.
D. is an example of common subexpression elimination.

2 Compiler Design (186) 77

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate1993
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/assembler
https://gateoverflow.in/tag/easy
https://gateoverflow.in/2513/gate1994-17
https://gateoverflow.in/2513
https://gateoverflow.in/tag/gate1994
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/assembler
https://gateoverflow.in/2514/gate1994-18
https://gateoverflow.in/2514
https://gateoverflow.in/tag/gate1994
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/assembler
https://gateoverflow.in/tag/true-false
https://gateoverflow.in/2721/gate1996-1-17
https://gateoverflow.in/2721
https://gateoverflow.in/tag/gate1996
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/assembler
https://gateoverflow.in/tag/Code+Optimization
https://gateoverflow.in/410/gate2008-12
https://gateoverflow.in/410
https://gateoverflow.in/tag/gate2008
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/code-optimization
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/1784/gate2014-1-17
https://gateoverflow.in/1784
https://gateoverflow.in

2.3.3 https://gateoverflow.in/2045

2.3.4 https://gateoverflow.in/2068

A. and B. and C. and D. and

2.4

2.4.1 https://gateoverflow.in/80282

A. The code generator. B. The code optimiser.
C. The lexical analyser. D. The syntax analyser.

2.4.2 https://gateoverflow.in/84033

2.4.3 https://gateoverflow.in/4066

A. No compilation error B. Only a lexical error
C. Only syntactic errors D. Both lexical and syntactic errors

2.4.4 https://gateoverflow.in/1309

gate2014-1 compiler-design code-optimization normal

Code Optimization: GATE2014-3-11

The minimum number of arithmetic operations required to evaluate the polynomial
for a given value of , using only one temporary variable is ______.

gate2014-3 compiler-design numerical-answers normal code-optimization

Code Optimization: GATE2014-3-34

Consider the basic block given below.

a = b + c
c = a + d
d = b + c
e = d - b
a = e + b

The minimum number of nodes and edges present in the DAG representation of the above basic block respectively are

gate2014-3 compiler-design code-optimization normal

Compilation Phases (8)

Compilation Phases: GATE1987-1-xi

In a compiler the module the checks every character of the source text is called:

gate1987 compiler-design compilation-phases

Compilation Phases: GATE1990-2-ix

Match the pairs in the following questions:

gate1990 match-the-following compiler-design compilation-phases

Compilation Phases: GATE2005-61

Consider line number of the following C-program.

int main() { /*Line 1 */
 int I, N; /*Line 2 */
 fro (I=0, I<N, I++); /*Line 3 */
}

Identify the compiler’s response about this line while creating the object-module:

gate2005 compiler-design compilation-phases normal

Compilation Phases: GATE2009-17

Match all items in Group 1 with the correct options from those given in Group 2.Syntax analysis

78 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2014-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/code-optimization
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2045/gate2014-3-11
https://gateoverflow.in/2045
https://gateoverflow.in/tag/gate2014-3
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/numerical-answers
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/code-optimization
https://gateoverflow.in/2068/gate2014-3-34
https://gateoverflow.in/2068
https://gateoverflow.in/tag/gate2014-3
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/code-optimization
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/Compilation+Phases
https://gateoverflow.in/80282/gate1987-1-xi
https://gateoverflow.in/80282
https://gateoverflow.in/tag/gate1987
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/compilation-phases
https://gateoverflow.in/84033/gate1990-2-ix
https://gateoverflow.in/84033
https://gateoverflow.in/tag/gate1990
https://gateoverflow.in/tag/match-the-following
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/compilation-phases
https://gateoverflow.in/4066/gate2005-61
https://gateoverflow.in/4066
https://gateoverflow.in/tag/gate2005
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/compilation-phases
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1309/gate2009-17
https://gateoverflow.in/1309
https://gateoverflow.in

A. B.
C. D.

2.4.5 https://gateoverflow.in/8098

A. B.
C. D.

2.4.6 https://gateoverflow.in/39548

2.4.7 https://gateoverflow.in/118592

A. B.
C. D.

2.4.8 https://gateoverflow.in/204082

gate2009 compiler-design easy compilation-phases

Compilation Phases: GATE2015-2-19

Match the following:

gate2015-2 compiler-design normal compilation-phases

Compilation Phases: GATE2016-2-19

Match the following:

A.
B.
C.
D.

gate2016-2 compiler-design easy compilation-phases

Compilation Phases: GATE2017-2-05

Match the following according to input (from the left column) to the compiler phase (in the right column) that
processes it:

gate2017-2 compiler-design compilation-phases easy

Compilation Phases: GATE2018-8

Which one of the following statements is FALSE?

A. Context-free grammar can be used to specify both lexical and syntax rules
B. Type checking is done before parsing
C. High-level language programs can be translated to different Intermediate Representations

2 Compiler Design (186) 79

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2009
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/easy
https://gateoverflow.in/tag/compilation-phases
https://gateoverflow.in/8098/gate2015-2-19
https://gateoverflow.in/8098
https://gateoverflow.in/tag/gate2015-2
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/compilation-phases
https://gateoverflow.in/39548/gate2016-2-19
https://gateoverflow.in/39548
https://gateoverflow.in/tag/gate2016-2
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/easy
https://gateoverflow.in/tag/compilation-phases
https://gateoverflow.in/118592/gate2017-2-05
https://gateoverflow.in/118592
https://gateoverflow.in/tag/gate2017-2
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/compilation-phases
https://gateoverflow.in/tag/easy
https://gateoverflow.in/204082/gate2018-8
https://gateoverflow.in/204082
https://gateoverflow.in

2.5

2.5.1 https://gateoverflow.in/849

A. One stack is enough B. Two stacks are needed
C. As many stacks as the height of the

expression tree are needed
D. A Turing machine is needed in the

general case

2.5.2 https://gateoverflow.in/1999

2.6

2.6.1 https://gateoverflow.in/86869

2.6.2 https://gateoverflow.in/537

2.6.3 https://gateoverflow.in/43604

D. Arguments to a function can be passed using the program stack

gate2018 compiler-design easy compilation-phases

Expression Evaluation (2)

Expression Evaluation: GATE2002-2.19

To evaluate an expression without any embedded function calls

gate2002 compiler-design expression-evaluation easy

Expression Evaluation: GATE2014-2-39

Consider the expression tree shown. Each leaf represents a numerical value, which can either be or . Over all
possible choices of the values at the leaves, the maximum possible value of the expression represented by the tree is
___.

gate2014-2 compiler-design normal expression-evaluation numerical-answers

Grammar (41)

Grammar: GATE1990-16a

Show that grammar is ambiguous using parse trees:

 if S then S else S

 if S then S

gate1990 descriptive compiler-design grammar

Grammar: GATE1991-10a

Consider the following grammar for arithmetic expressions using binary operators and which are not associative

(is the start symbol)

Is the grammar unambiguous? Is so, what is the relative precedence between and ? If not, give an unambiguous grammar
that gives precedence over .

gate1991 grammar compiler-design normal descriptive

Grammar: GATE1991-10b

Consider the following grammar for arithmetic expressions using binary operators and which are not associative

80 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2018
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/easy
https://gateoverflow.in/tag/compilation-phases
https://gateoverflow.in/tag/Expression+Evaluation
https://gateoverflow.in/849/gate2002-2-19
https://gateoverflow.in/849
https://gateoverflow.in/tag/gate2002
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/expression-evaluation
https://gateoverflow.in/tag/easy
https://gateoverflow.in/1999/gate2014-2-39
https://gateoverflow.in/1999
https://gateoverflow.in/tag/gate2014-2
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/expression-evaluation
https://gateoverflow.in/tag/numerical-answers
https://gateoverflow.in/tag/Grammar
https://gateoverflow.in/86869/gate1990-16a
https://gateoverflow.in/86869
https://gateoverflow.in/tag/gate1990
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/537/gate1991-10a
https://gateoverflow.in/537
https://gateoverflow.in/tag/gate1991
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/43604/gate1991-10b
https://gateoverflow.in/43604
https://gateoverflow.in

2.6.4 https://gateoverflow.in/43605

2.6.5 https://gateoverflow.in/2461

A. Syntax of if-then-else statements B. Syntax of recursive procedures
C. Whether a variable has been declared before its use D. Variable names of arbitrary length

2.6.6 https://gateoverflow.in/2516

2.6.7 https://gateoverflow.in/2482

2.6.8 https://gateoverflow.in/2597

(is the start symbol)

Does the grammar allow expressions with redundant parentheses as in or in ? If so, convert the grammar
into one which does not generate expressions with redundant parentheses. Do this with minimum number of changes to the
given production rules and adding at most one more production rule.

gate1991 grammar compiler-design normal descriptive

Grammar: GATE1991-10c

Consider the following grammar for arithmetic expressions using binary operators and which are not associative

(is the start symbol)

Does the grammar allow expressions with redundant parentheses as in or in ? If so, convert the grammar
into one which does not generate expressions with redundant parentheses. Do this with minimum number of changes to the
given production rules and adding at most one more production rule.

Convert the grammar obtained above into one that is not left recursive.

gate1991 grammar compiler-design normal descriptive

Grammar: GATE1994-1.18

Which of the following features cannot be captured by context-free grammars?

gate1994 compiler-design grammar normal

Grammar: GATE1994-20

A grammar is in Chomsky-Normal Form (CNF) if all its productions are of the form or , where
 and , are non-terminals and is a terminal. Suppose is a CFG in CNF and is a string in of length ,

then how long is a derivation of in ?

gate1994 compiler-design grammar normal

Grammar: GATE1994-3.5

Match the following items

gate1994 compiler-design grammar normal

Grammar: GATE1995-1.10

Consider a grammar with the following productions

2 Compiler Design (186) 81

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate1991
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/43605/gate1991-10c
https://gateoverflow.in/43605
https://gateoverflow.in/tag/gate1991
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/2461/gate1994-1-18
https://gateoverflow.in/2461
https://gateoverflow.in/tag/gate1994
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2516/gate1994-20
https://gateoverflow.in/2516
https://gateoverflow.in/tag/gate1994
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2482/gate1994-3-5
https://gateoverflow.in/2482
https://gateoverflow.in/tag/gate1994
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2597/gate1995-1-10
https://gateoverflow.in/2597
https://gateoverflow.in

A. Context free B. Regular C. Context sensitive D.

2.6.9 https://gateoverflow.in/2644

2.6.10 https://gateoverflow.in/2763

2.6.11 https://gateoverflow.in/2739

The above grammar is:

gate1995 compiler-design grammar normal

Grammar: GATE1995-9

A. Translate the arithmetic expression into syntax tree.
B. A grammar is said to have cycles if it is the case that

Show that no grammar that has cycles can be LL(1).

gate1995 compiler-design grammar normal

Grammar: GATE1996-11

Let be a context-free grammar where with the productions in given below.

(denotes the null string). Transform the grammar to an equivalent context-free grammar that has no productions and
no unit productions. (A unit production is of the form , and and are non terminals).

gate1996 compiler-design grammar normal

Grammar: GATE1996-2.10

The grammar whose productions are

is ambiguous because
(a) the sentence

if a then if b then c:= d

has more than two parse trees
(b) the left most and right most derivations of the sentence

if a then if b then c:= d

give rise to different parse trees
(c) the sentence

if a then if b then c:= d else c:= f

has more than two parse trees
(d) the sentence

if a then if b then c:= d else c:= f

82 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate1995
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2644/gate1995-9
https://gateoverflow.in/2644
https://gateoverflow.in/tag/gate1995
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2763/gate1996-11
https://gateoverflow.in/2763
https://gateoverflow.in/tag/gate1996
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2739/gate1996-2-10
https://gateoverflow.in/2739
https://gateoverflow.in

2.6.12 https://gateoverflow.in/2222

2.6.13 https://gateoverflow.in/2271

2.6.14 https://gateoverflow.in/1728

has two parse trees

gate1996 compiler-design grammar normal

Grammar: GATE1997-1.6

In the following grammar

Which of the following is true?

A. ' ' is left associative while ' ' is right associative
B. Both ' ' and ' ' are left associative
C. ' ' is right associative while ' ' is left associative
D. None of the above

gate1997 compiler-design grammar normal

Grammar: GATE1997-11

Consider the grammar

where are non-terminal symbols with being the start symbol; are terminal symbols and ‘ ’ is the empty
string. This grammar generates strings of the form for some .

a. What is the condition on the values of ?
b. Find the smallest string that has two parse trees.

gate1997 compiler-design grammar normal theory-of-computation

Grammar: GATE1998-14

A. Let be a CFG where, and is given by

What is ?
B. Use the grammar in Part(a) to give a CFG for by adding not more than

production rules.
C. Is inherently ambiguous?

gate1998 compiler-design grammar descriptive

2 Compiler Design (186) 83

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate1996
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2222/gate1997-1-6
https://gateoverflow.in/2222
https://gateoverflow.in/tag/gate1997
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2271/gate1997-11
https://gateoverflow.in/2271
https://gateoverflow.in/tag/gate1997
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/theory-of-computation
https://gateoverflow.in/1728/gate1998-14
https://gateoverflow.in/1728
https://gateoverflow.in/tag/gate1998
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in

2.6.15 https://gateoverflow.in/1697

2.6.16 https://gateoverflow.in/1493

2.6.17 https://gateoverflow.in/668

A. has higher precedence than B. has higher precedence than
C. and have same precedence D. has higher precedence than

2.6.18 https://gateoverflow.in/711

2.6.19 https://gateoverflow.in/759

2.6.20 https://gateoverflow.in/944

Grammar: GATE1998-6b

Consider the grammar

S
A

Construct an equivalent grammar with no left recursion and with minimum number of production rules.

gate1998 compiler-design grammar descriptive

Grammar: GATE1999-2.15

A grammar that is both left and right recursive for a non-terminal, is

A. Ambiguous
B. Unambiguous
C. Information is not sufficient to decide whether it is ambiguous or unambiguous
D. None of the above

gate1999 compiler-design grammar normal

Grammar: GATE2000-2.21, ISRO2015-24

Given the following expression grammar:

Which of the following is true?

gate2000 grammar normal compiler-design isro2015

Grammar: GATE2001-1.18

Which of the following statements is false?

A. An unambiguous grammar has same leftmost and rightmost derivation
B. An LL(1) parser is a top-down parser
C. LALR is more powerful than SLR
D. An ambiguous grammar can never be LR(k) for any k

gate2001 compiler-design grammar normal

Grammar: GATE2001-18

A. Remove left-recursion from the following grammar:
B. Consider the following grammar:

 Construct all possible parse trees for the string abab. Is the grammar ambiguous?

gate2001 compiler-design grammar descriptive

Grammar: GATE2003-56

Consider the grammar shown below

∊

84 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/1697/gate1998-6b
https://gateoverflow.in/1697
https://gateoverflow.in/tag/gate1998
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/1493/gate1999-2-15
https://gateoverflow.in/1493
https://gateoverflow.in/tag/gate1999
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/668/gate2000-2-21-isro2015-24
https://gateoverflow.in/668
https://gateoverflow.in/tag/gate2000
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/isro2015
https://gateoverflow.in/711/gate2001-1-18
https://gateoverflow.in/711
https://gateoverflow.in/tag/gate2001
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/759/gate2001-18
https://gateoverflow.in/759
https://gateoverflow.in/tag/gate2001
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/944/gate2003-56
https://gateoverflow.in/944
https://gateoverflow.in

2.6.21 https://gateoverflow.in/946

A. B. C. D.

2.6.22 https://gateoverflow.in/1042

A. B. C. D.

2.6.23 https://gateoverflow.in/1005

A. (I) only B. (I) and (III) only C. (II) and (III) only D. (III) and (IV) only

2.6.24 https://gateoverflow.in/1082

In the predictive parse table, of this grammar, the entries and respectively are

A. and
B. and
C. and
D. } and

gate2003 compiler-design grammar normal

Grammar: GATE2003-58

Consider the translation scheme shown below.
S T R
R + T {print(‘+’);} R
T num {print(num.val);}
Here num is a token that represents an integer and num.val represents the corresponding integer value. For an input string ‘

’, this translation scheme will print

gate2003 compiler-design grammar normal

Grammar: GATE2004-45

Consider the grammar with the following translation rules and as the start symbol

Compute E.value for the root of the parse tree for the expression: # & # &

gate2004 compiler-design grammar normal

Grammar: GATE2004-8

Which of the following grammar rules violate the requirements of an operator grammar? P, Q, R are nonterminals, and
r, s, t are terminals.

I. P Q R
II. P Q s R

III. P
IV. P Q t R r

gate2004 compiler-design grammar normal

Grammar: GATE2004-88

Consider the following grammar G:

Let and denote the number of a’s and b’s in a string respectively.

2 Compiler Design (186) 85

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2003
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/946/gate2003-58
https://gateoverflow.in/946
https://gateoverflow.in/tag/gate2003
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1042/gate2004-45
https://gateoverflow.in/1042
https://gateoverflow.in/tag/gate2004
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1005/gate2004-8
https://gateoverflow.in/1005
https://gateoverflow.in/tag/gate2004
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1082/gate2004-88
https://gateoverflow.in/1082
https://gateoverflow.in

2.6.25 https://gateoverflow.in/1382

A. and B. and
C. and D. and

2.6.26 https://gateoverflow.in/995

A. I only B. I and III only C. II and III only D. I, II and III

2.6.27 https://gateoverflow.in/1837

A. B. C. D.

2.6.28 https://gateoverflow.in/1856

The language over generated by is

A.
B.
C.
D.

gate2004 compiler-design grammar normal

Grammar: GATE2005-59

Consider the grammar:

For a sentence , the handles in the right-sentential form of the reduction are:

gate2005 compiler-design grammar normal

Grammar: GATE2006-32, ISRO2016-35

Consider the following statements about the context free grammar

I. is ambiguous
II. produces all strings with equal number of ’s and ’s

III. can be accepted by a deterministic PDA.

Which combination below expresses all the true statements about ?

gate2006 compiler-design grammar normal isro2016

Grammar: GATE2006-59

Consider the following translation scheme.

Here id is a token that represents an integer and id.value represents the corresponding integer value. For an input ' ',
 this translation scheme prints

gate2006 compiler-design grammar normal

Grammar: GATE2006-84

Which one of the following grammars generates the language ?

A.

B.

86 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2004
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1382/gate2005-59
https://gateoverflow.in/1382
https://gateoverflow.in/tag/gate2005
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/995/gate2006-32-isro2016-35
https://gateoverflow.in/995
https://gateoverflow.in/tag/gate2006
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/isro2016
https://gateoverflow.in/1837/gate2006-59
https://gateoverflow.in/1837
https://gateoverflow.in/tag/gate2006
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1856/gate2006-84
https://gateoverflow.in/1856
https://gateoverflow.in

2.6.29 https://gateoverflow.in/79799

A. B. C. D.

2.6.30 https://gateoverflow.in/79801

A. B. C. D.

2.6.31 https://gateoverflow.in/1250

A. it is left recursive B. it is right recursive
C. it is ambiguous D. it is not context-free

2.6.32 https://gateoverflow.in/1251

A. Both P and Q are true B. P is true and Q is false
C. P is false and Q is true D. Both P and Q are false

C.

D.

gate2006 compiler-design grammar normal theory-of-computation

Grammar: GATE2006-85

Find the grammar that generates the language . In that grammar what is the length of the derivation
(number of steps starring from) to generate the string with

gate2006 compiler-design grammar normal

Grammar: GATE2006-85

The grammar

generates the language . In that grammar what is the length of the derivation (number of steps starting from
) to generate the string with

gate2006 compiler-design grammar normal

Grammar: GATE2007-52

Consider the grammar with non-terminals , terminals , with as the start symbol,
and the following set of rules:

The grammar is NOT LL(1) because:

gate2007 compiler-design grammar normal

Grammar: GATE2007-53

Consider the following two statements:

P: Every regular grammar is LL(1)
Q: Every regular set has a LR(1) grammar

Which of the following is TRUE?

gate2007 compiler-design grammar normal

2 Compiler Design (186) 87

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2006
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/theory-of-computation
https://gateoverflow.in/79799/gate2006-85
https://gateoverflow.in/79799
https://gateoverflow.in/tag/gate2006
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/79801/gate2006-85
https://gateoverflow.in/79801
https://gateoverflow.in/tag/gate2006
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1250/gate2007-52
https://gateoverflow.in/1250
https://gateoverflow.in/tag/gate2007
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1251/gate2007-53
https://gateoverflow.in/1251
https://gateoverflow.in/tag/gate2007
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in
samsung
Highlight

2.6.33 https://gateoverflow.in/1272

A. B. C. D.

2.6.34 https://gateoverflow.in/43512

A. B. C. D.

2.6.35 https://gateoverflow.in/3442

A. B.
C. D. is empty

2.6.36 https://gateoverflow.in/395

A. I, II, III and IV B. II, III and IV only
C. I, III and IV only D. I, II and IV only

2.6.37 https://gateoverflow.in/2339

A. LL(1) but not LR(1) B. LR(1) but not LL(1)
C. Both LL(1) and LR(1) D. Neither LL(1) nor LR(1)

2.6.38 https://gateoverflow.in/1973

Grammar: GATE2007-78

Consider the CFG with as the non-terminal alphabet, as the terminal alphabet, as the start symbol
and the following set of production rules:

Which of the following strings is generated by the grammar?

gate2007 compiler-design grammar normal

Grammar: GATE2007-79

Consider the CFG with as the non-terminal alphabet, as the terminal alphabet, as the start symbol
and the following set of production rules:

For the string , how many derivation trees are there?

gate2007 compiler-design grammar normal

Grammar: GATE2007-IT-9

Consider an ambiguous grammar and its disambiguated version Let the language recognized by the two
grammars be denoted by and respectively. Which one of the following is true?

gate2007-it compiler-design grammar normal

Grammar: GATE2008-50

Which of the following statements are true?

I. Every left-recursive grammar can be converted to a right-recursive grammar and vice-versa
II. All -productions can be removed from any context-free grammar by suitable transformations

III. The language generated by a context-free grammar all of whose productions are of the form or (where,
 is a string of terminals and is a non-terminal), is always regular

IV. The derivation trees of strings generated by a context-free grammar in Chomsky Normal Form are always binary trees

gate2008 normal compiler-design grammar

Grammar: GATE2010-38

The grammar is

gate2010 compiler-design grammar normal

Grammar: GATE2014-2-17

Consider the grammar defined by the following production rules, with two operators and

88 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/1272/gate2007-78
https://gateoverflow.in/1272
https://gateoverflow.in/tag/gate2007
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/43512/gate2007-79
https://gateoverflow.in/43512
https://gateoverflow.in/tag/gate2007
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/3442/gate2007-it-9
https://gateoverflow.in/3442
https://gateoverflow.in/tag/gate2007-it
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/395/gate2008-50
https://gateoverflow.in/395
https://gateoverflow.in/tag/gate2008
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/2339/gate2010-38
https://gateoverflow.in/2339
https://gateoverflow.in/tag/gate2010
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1973/gate2014-2-17
https://gateoverflow.in/1973
https://gateoverflow.in

2.6.39 https://gateoverflow.in/39594

A. B. C. D.

2.6.40 https://gateoverflow.in/39598

A. Both G1 and G2 B. Only G1 C. Only G2 D. Neither G1 nor G2

2.6.41 https://gateoverflow.in/302805

2.7

2.7.1 https://gateoverflow.in/87881

Which one of the following is TRUE?

A. is left associative, while is right associative
B. is right associative, while is left associative
C. Both and are right associative
D. Both and are left associative

gate2014-2 compiler-design grammar normal

Grammar: GATE2016-2-45

Which one of the following grammars is free from left recursion?

gate2016-2 compiler-design grammar easy

Grammar: GATE2016-2-46

A student wrote two context-free grammars G1 and G2 for generating a single C-like array declaration. The dimension
of the array is at least one. For example,

 int a[10] [3];

The grammars use D as the start symbol, and use six terminal symbols int ; id [] num.

Which of the grammars correctly generate the declaration mentioned above?

gate2016-2 compiler-design grammar normal

Grammar: GATE2019-43

Consider the augmented grammar given below:

Let The number of items in the set is______

gate2019 numerical-answers compiler-design grammar

Infix Postfix (1)

Infix Postfix: GATE1989-4-ii

Provide short answers to the following questions:

2 Compiler Design (186) 89

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2014-2
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/39594/gate2016-2-45
https://gateoverflow.in/39594
https://gateoverflow.in/tag/gate2016-2
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/easy
https://gateoverflow.in/39598/gate2016-2-46
https://gateoverflow.in/39598
https://gateoverflow.in/tag/gate2016-2
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/normal
https://gateoverflow.in/302805/gate2019-43
https://gateoverflow.in/302805
https://gateoverflow.in/tag/gate2019
https://gateoverflow.in/tag/numerical-answers
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/Infix+Postfix
https://gateoverflow.in/87881/gate1989-4-ii
https://gateoverflow.in/87881
https://gateoverflow.in

2.8

2.8.1 https://gateoverflow.in/94350

2.8.2 https://gateoverflow.in/87885

2.8.3 https://gateoverflow.in/43583

2.8.4 https://gateoverflow.in/2453

Compute the postfix equivalent of the following infix arithmetic expression

where represents exponentiation. Assume normal operator precedences.

gate1989 descriptive compiler-design infix-postfix intermediate-code

Intermediate Code (8)

Intermediate Code: GATE1988-2xvii

Construct a DAG for the following set of quadruples:

E:=A+B
F:=E-C
G:=F*D
H:=A+B
I:=I-C
J:=I+G

gate1988 descriptive compiler-design intermediate-code

Intermediate Code: GATE1989-4-v

Is the following code template for the if-then-else statement correct? if not, correct it.

if expression then statement

 else statement

Template:

 Code for expression

 (*result in indicates true *)

 Branch on to

 Code for statement

 : Code for statement

descriptive gate1989 compiler-design intermediate-code

Intermediate Code: GATE1992-11b

Write address intermediate code (quadruples) for the following boolean expression in the sequence as it would be
generated by a compiler. Partial evaluation of boolean expressions is not permitted. Assume the usual rules of
precedence of the operators.

gate1992 compiler-design syntax-directed-translation intermediate-code descriptive

Intermediate Code: GATE1994-1.12

Generation of intermediate code based on an abstract machine model is useful in compilers because

A. it makes implementation of lexical analysis and syntax analysis easier
B. syntax-directed translations can be written for intermediate code generation
C. it enhances the portability of the front end of the compiler
D. it is not possible to generate code for real machines directly from high level language programs

90 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate1989
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/infix-postfix
https://gateoverflow.in/tag/intermediate-code
https://gateoverflow.in/tag/Intermediate+Code
https://gateoverflow.in/94350/gate1988-2xvii
https://gateoverflow.in/94350
https://gateoverflow.in/tag/gate1988
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/intermediate-code
https://gateoverflow.in/87885/gate1989-4-v
https://gateoverflow.in/87885
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/tag/gate1989
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/intermediate-code
https://gateoverflow.in/43583/gate1992-11b
https://gateoverflow.in/43583
https://gateoverflow.in/tag/gate1992
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/syntax-directed-translation
https://gateoverflow.in/tag/intermediate-code
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/2453/gate1994-1-12
https://gateoverflow.in/2453
https://gateoverflow.in

2.8.5 https://gateoverflow.in/1993

2.8.6 https://gateoverflow.in/2051

2.8.7 https://gateoverflow.in/8365

2.8.8 https://gateoverflow.in/8096

A. Either or B. Either or
C. Only and D. All of , and

2.9

2.9.1 https://gateoverflow.in/118374

A. B. C. D.

gate1994 compiler-design intermediate-code easy

Intermediate Code: GATE2014-2-34

For a C program accessing , the following intermediate code is generated by a compiler. Assume that the
size of an integer is bits and the size of a character is bits.

t0 = i ∗ 1024
t1 = j ∗ 32
t2 = k ∗ 4
t3 = t1 + t0
t4 = t3 + t2
t5 = X[t4]

Which one of the following statements about the source code for the C program is CORRECT?

A. is declared as "int ”.
B. is declared as "int ”.
C. is declared as "char ”.
D. is declared as "char ”.

gate2014-2 compiler-design intermediate-code programming-in-c normal

Intermediate Code: GATE2014-3-17

One of the purposes of using intermediate code in compilers is to

A. make parsing and semantic analysis simpler.
B. improve error recovery and error reporting.
C. increase the chances of reusing the machine-independent code optimizer in other compilers.
D. improve the register allocation.

gate2014-3 compiler-design intermediate-code easy

Intermediate Code: GATE2015-1-55

The least number of temporary variables required to create a three-address code in static single assignment form for the
expression is__________________.

gate2015-1 compiler-design intermediate-code normal numerical-answers

Intermediate Code: GATE2015-1-8

For computer based on three-address instruction formats, each address field can be used to specify which of the
following:
(S1) A memory operand
(S2) A processor register
(S3) An implied accumulator register

gate2015-1 compiler-design intermediate-code normal

Left Recursion (1)

Left Recursion: GATE2017-2-32

Consider the following expression grammar :

Which of the following grammars is not left recursive, but is equivalent to ?

2 Compiler Design (186) 91

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate1994
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/intermediate-code
https://gateoverflow.in/tag/easy
https://gateoverflow.in/1993/gate2014-2-34
https://gateoverflow.in/1993
https://gateoverflow.in/tag/gate2014-2
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/intermediate-code
https://gateoverflow.in/tag/programming-in-c
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2051/gate2014-3-17
https://gateoverflow.in/2051
https://gateoverflow.in/tag/gate2014-3
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/intermediate-code
https://gateoverflow.in/tag/easy
https://gateoverflow.in/8365/gate2015-1-55
https://gateoverflow.in/8365
https://gateoverflow.in/tag/gate2015-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/intermediate-code
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/numerical-answers
https://gateoverflow.in/8096/gate2015-1-8
https://gateoverflow.in/8096
https://gateoverflow.in/tag/gate2015-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/intermediate-code
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/Left+Recursion
https://gateoverflow.in/118374/gate2017-2-32
https://gateoverflow.in/118374
https://gateoverflow.in

2.10

2.10.1 https://gateoverflow.in/80364

A. Somewhat slower compilation B. A program that is easier to understand
C. An incorrect program D. None of the above

2.10.2 https://gateoverflow.in/641

A. B. C. D.

2.10.3 https://gateoverflow.in/2186

A. Abstract syntax tree B. Symbol table
C. Semantic stack D. Parse table

2.10.4 https://gateoverflow.in/2103

A. parsing of the program B. the code generation
C. the lexical analysis of the program D. dataflow analysis

2.10.5 https://gateoverflow.in/2121

A. Finite state automata B. Deterministic pushdown automata
C. Non-deterministic pushdown automata D. Turing machine

2.10.6 https://gateoverflow.in/204111

A. B. C. D.

gate2017-2 grammar left-recursion

Lexical Analysis (6)

Lexical Analysis: GATE1987-1-xvii

Using longer identifiers in a program will necessarily lead to:

gate1987 compiler-design lexical-analysis

Lexical Analysis: GATE2000-1.18, ISRO2015-25

The number of tokens in the following C statement is

printf("i=%d, &i=%x", i, &i);

gate2000 compiler-design lexical-analysis easy isro2015

Lexical Analysis: GATE2010-13

Which data structure in a compiler is used for managing information about variables and their attributes?

gate2010 compiler-design lexical-analysis easy

Lexical Analysis: GATE2011-1

In a compiler, keywords of a language are recognized during

gate2011 compiler-design lexical-analysis easy

Lexical Analysis: GATE2011-19

The lexical analysis for a modern computer language such as Java needs the power of which one of the following
machine models in a necessary and sufficient sense?

gate2011 compiler-design lexical-analysis easy

Lexical Analysis: GATE2018-37

A lexical analyzer uses the following patterns to recognize three tokens , , and over the alphabet .
:
:
:

Note that ‘x?’ means 0 or 1 occurrence of the symbol x. Note also that the analyzer outputs the token that matches the longest
possible prefix.
If the string bbaacabc is processes by the analyzer, which one of the following is the sequence of tokens it outputs?

92 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2017-2
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/left-recursion
https://gateoverflow.in/tag/Lexical+Analysis
https://gateoverflow.in/80364/gate1987-1-xvii
https://gateoverflow.in/80364
https://gateoverflow.in/tag/gate1987
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/lexical-analysis
https://gateoverflow.in/641/gate2000-1-18-isro2015-25
https://gateoverflow.in/641
https://gateoverflow.in/tag/gate2000
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/lexical-analysis
https://gateoverflow.in/tag/easy
https://gateoverflow.in/tag/isro2015
https://gateoverflow.in/2186/gate2010-13
https://gateoverflow.in/2186
https://gateoverflow.in/tag/gate2010
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/lexical-analysis
https://gateoverflow.in/tag/easy
https://gateoverflow.in/2103/gate2011-1
https://gateoverflow.in/2103
https://gateoverflow.in/tag/gate2011
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/lexical-analysis
https://gateoverflow.in/tag/easy
https://gateoverflow.in/2121/gate2011-19
https://gateoverflow.in/2121
https://gateoverflow.in/tag/gate2011
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/lexical-analysis
https://gateoverflow.in/tag/easy
https://gateoverflow.in/204111/gate2018-37
https://gateoverflow.in/204111
https://gateoverflow.in

2.11

2.11.1 https://gateoverflow.in/519

2.11.2 https://gateoverflow.in/962

2.11.3 https://gateoverflow.in/1006

A. Edit time B. Compile time C. Link time D. Load time

2.12

2.12.1 https://gateoverflow.in/8356

A. B. C. D.

2.13

gate2018 compiler-design lexical-analysis normal

Linking (3)

Linking: GATE1991-03,ix

Choose the correct alternatives (more than one may be correct) and write the corresponding letters only

A “link editor” is a program that:

A. matches the parameters of the macro-definition with locations of the parameters of the macro call
B. matches external names of one program with their location in other programs
C. matches the parameters of subroutine definition with the location of parameters of subroutine call.
D. acts as a link between text editor and the user
E. acts as a link between compiler and the user program

gate1991 compiler-design normal linking

Linking: GATE2003-76

Which of the following is NOT an advantage of using shared, dynamically linked libraries as opposed to using
statistically linked libraries?

A. Smaller sizes of executable files
B. Lesser overall page fault rate in the system
C. Faster program startup
D. Existing programs need not be re-linked to take advantage of newer versions of libraries

gate2003 compiler-design runtime-environments linking easy

Linking: GATE2004-9

Consider a program that consists of two source modules and contained in two different files. If contains
a reference to a function defined in the reference will be resolved at

gate2004 compiler-design easy linking

Live Variable (1)

Live Variable: GATE2015-1-50

A variable is said to be live at a statement in a program if the following three conditions hold simultaneously:

i. There exists a statement that uses
ii. There is a path from to in the flow graph corresponding to the program

iii. The path has no intervening assignment to including at and

The variables which are live both at the statement in basic block and at the statement in basic block of the above control
flow graph are

gate2015-1 compiler-design live-variable normal

Macros (4)

2 Compiler Design (186) 93

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2018
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/lexical-analysis
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/Linking
https://gateoverflow.in/519/gate1991-03-ix
https://gateoverflow.in/519
https://gateoverflow.in/tag/gate1991
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/linking
https://gateoverflow.in/962/gate2003-76
https://gateoverflow.in/962
https://gateoverflow.in/tag/gate2003
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/linking
https://gateoverflow.in/tag/easy
https://gateoverflow.in/1006/gate2004-9
https://gateoverflow.in/1006
https://gateoverflow.in/tag/gate2004
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/easy
https://gateoverflow.in/tag/linking
https://gateoverflow.in/tag/Live+Variable
https://gateoverflow.in/8356/gate2015-1-50
https://gateoverflow.in/8356
https://gateoverflow.in/tag/gate2015-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/live-variable
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/Macros
https://gateoverflow.in

2.13.1 https://gateoverflow.in/552

2.13.2 https://gateoverflow.in/2598

A. Variables B. Identifiers
C. Actual parameters D. Formal parameters

2.13.3 https://gateoverflow.in/2745

A. (ii) only B. (i) only C. both (i) and (ii) D. None of the above

2.13.4 https://gateoverflow.in/2225

2.14

2.14.1 https://gateoverflow.in/94333

Macros: GATE1992-01,vii

Macro expansion is done in pass one instead of pass two in a two pass macro assembler because _________

gate1992 compiler-design macros easy

Macros: GATE1995-1.11

What are and in the following macro definition?

macro Add x, y
 Load y
 Mul x
 Store y
end macro

gate1995 compiler-design macros easy

Macros: GATE1996-2.16

Which of the following macros can put a macro assembler into an infinite loop?

i. .MACRO M1, X
.IF EQ, X ;if X=0 then
M1 X + 1
.ENDC
.IF NE, X ;if X ≠ O then
.WORD X ;address (X) is stored here
.ENDC
.ENDM

ii. .MACRO M2, X
.IF EQ, X
M2 X
.ENDC
.IF NE, X
.WORD X + 1
.ENDC
.ENDM

gate1996 compiler-design macros normal

Macros: GATE1997-1.9

The conditional expansion facility of macro processor is provided to

A. test a condition during the execution of the expanded program
B. to expand certain model statements depending upon the value of a condition during the execution of the expanded program
C. to implement recursion
D. to expand certain model statements depending upon the value of a condition during the process of macro expansion

gate1997 compiler-design macros easy

Parameter Passing (13)

Parameter Passing: GATE1988-2xv

What is printed by following program, assuming call-by reference method of passing parameters for all variables in the
parameter list of procedure P?

program Main(inout, output);
var a, b:integer;
 procedure P(x, y, z:integer);
 begin
 y:=y+1
 z:=x+x
 end P;
begin
 a:=2; b:=3;

94 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/552/gate1992-01-vii
https://gateoverflow.in/552
https://gateoverflow.in/tag/gate1992
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/macros
https://gateoverflow.in/tag/easy
https://gateoverflow.in/2598/gate1995-1-11
https://gateoverflow.in/2598
https://gateoverflow.in/tag/gate1995
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/macros
https://gateoverflow.in/tag/easy
https://gateoverflow.in/2745/gate1996-2-16
https://gateoverflow.in/2745
https://gateoverflow.in/tag/gate1996
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/macros
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2225/gate1997-1-9
https://gateoverflow.in/2225
https://gateoverflow.in/tag/gate1997
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/macros
https://gateoverflow.in/tag/easy
https://gateoverflow.in/tag/Parameter+Passing
https://gateoverflow.in/94333/gate1988-2xv
https://gateoverflow.in/94333
https://gateoverflow.in

2.14.2 https://gateoverflow.in/94371

a. create a new local variable, say z; b. assign to z, the value of A [i];
c. execute the body of P using z for k; d. set A [i] to z;

2.14.3 https://gateoverflow.in/37264

A. Passing an expression as a parameter B. Passing an array as a parameter
C. Passing a pointer as a parameter D. Passing as array element as a

parameter

2.14.4 https://gateoverflow.in/85981

2.14.5 https://gateoverflow.in/524

 p(a+b, a, a);
 Write(a)
end.

gate1988 descriptive compiler-design runtime-environments parameter-passing numerical-answers

Parameter Passing: GATE1988-8i

Consider the procedure declaration:

Procedure
P (k: integer)

where the parameter passing mechanism is call-by-value-result. Is it correct if the call, P (A[i]), where A is an array and i an
integer, is implemented as below.

Explain your answer. If this is incorrect implementation, suggest a correct one.

gate1988 descriptive compiler-design runtime-environments parameter-passing

Parameter Passing: GATE1989-3-viii

In which of the following case(s) is it possible to obtain different results for call-by-reference and call-by-name
parameter passing?

gate1989 parameter-passing runtime-environments compiler-design

Parameter Passing: GATE1990-11a

What does the following program output?

program module (input, output);
var
 a:array [1...5] of integer;
 i, j: integer;
procedure unknown (var b: integer, var c: integer);
var
 i:integer;
begin
 for i := 1 to 5 do a[i] := i;
 b:= 0; c := 0
 for i := 1 to 5 do write (a[i]);
 writeln();
 a[3]:=11; a[1]:=11;
 for i:=1 to 5 do a [i] := sqr(i);
 writeln(c,b); b := 5; c := 6;
end;
begin
 i:=1; j:=3; unknown (a[i], a[j]);
 for i:=1 to 5 do write (a[i]);
end;

gate1990 descriptive compiler-design runtime-environments parameter-passing

Parameter Passing: GATE1991-03,x

Choose the correct alternatives (more than one may be correct) and write the corresponding letters only:
Indicate all the true statements from the following:

A. Recursive descent parsing cannot be used for grammar with left recursion.
B. The intermediate form for representing expressions which is best suited for code optimization is the postfix form.
C. A programming language not supporting either recursion or pointer type does not need the support of dynamic memory

allocation.
D. Although C does not support call-by-name parameter passing, the effect can be correctly simulated in C
E. No feature of Pascal typing violates strong typing in Pascal.

2 Compiler Design (186) 95

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate1988
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/tag/numerical-answers
https://gateoverflow.in/94371/gate1988-8i
https://gateoverflow.in/94371
https://gateoverflow.in/tag/gate1988
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/37264/gate1989-3-viii
https://gateoverflow.in/37264
https://gateoverflow.in/tag/gate1989
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/85981/gate1990-11a
https://gateoverflow.in/85981
https://gateoverflow.in/tag/gate1990
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/524/gate1991-03-x
https://gateoverflow.in/524
https://gateoverflow.in

2.14.6 https://gateoverflow.in/536

2.14.7 https://gateoverflow.in/43603

2.14.8 https://gateoverflow.in/2322

gate1991 compiler-design parameter-passing programming difficult

Parameter Passing: GATE1991-09a

Consider the following pseudo-code (all data items are of type integer):

procedure P(a, b, c);
 a := 2;
 c := a + b;
end {P}

begin
 x := 1;
 y := 5;
 z := 100;
 P(x, x*y, z);
 Write ('x = ', x, 'z = ', z);
end

Determine its output, if the parameters are passed to the Procedure P by

i. value
ii. reference

iii. name

gate1991 compiler-design parameter-passing normal runtime-environments

Parameter Passing: GATE1991-09b

For the following code, indicate the output if

a. static scope rules
b. dynamic scope rules

are used

var a,b : integer;

procedure P;
 a := 5;
 b := 10;
end {P};

procedure Q;
 var a, b : integer;
 P;
end {Q};

begin
 a := 1;
 b := 2;
 Q;
 Write ('a = ', a, 'b = ', b);
end

gate1991 runtime-environments normal compiler-design parameter-passing

Parameter Passing: GATE1993-26

A stack is used to pass parameters to procedures in a procedure call.

A. If a procedure has two parameters as described in procedure definition:

procedure P (var x :integer; y: integer);

and if is called by ;
State precisely in a sentence what is pushed on stack for parameters and

B. In the generated code for the body of procedure , how will the addressing of formal parameters and differ?

gate1993 compiler-design parameter-passing runtime-environments normal

96 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate1991
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/tag/programming
https://gateoverflow.in/tag/difficult
https://gateoverflow.in/536/gate1991-09a
https://gateoverflow.in/536
https://gateoverflow.in/tag/gate1991
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/43603/gate1991-09b
https://gateoverflow.in/43603
https://gateoverflow.in/tag/gate1991
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/2322/gate1993-26
https://gateoverflow.in/2322
https://gateoverflow.in/tag/gate1993
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/normal
https://gateoverflow.in

2.14.9 https://gateoverflow.in/2616

A. B. C. Run time error D. None of the above

2.14.10 https://gateoverflow.in/43575

A. B. C. D.

2.14.11 https://gateoverflow.in/999

2.14.12 https://gateoverflow.in/3466

Parameter Passing: GATE1995-2.4

What is the value of printed by the following program?

program COMPUTE (input, output);
var X:integer;
procedure FIND (X:real);
 begin
 X:=sqrt(X);
 end;
begin
 X:=2
 FIND(X);
 writeln(X);
end.

gate1995 programming parameter-passing runtime-environments easy

Parameter Passing: GATE2003-74

The following program fragment is written in a programming language that allows global variables and does not allow
nested declarations of functions.

global int i=100, j=5;
void P(x) {
 int i=10;
 print(x+10);
 i=200;
 j=20;
 print (x);
}
main() {P(i+j);}

If the programming language uses dynamic scoping and call by name parameter passing mechanism, the values printed by the
above program are

gate2003 programming compiler-design parameter-passing runtime-environments normal

Parameter Passing: GATE2004-2,ISRO2017-54

Consider the following function

void swap(int a, int b)
{
 int temp;
 temp = a;
 a = b;
 b = temp;
}

In order to exchange the values of two variables and .

A. call
B. call
C. cannot be used as it does not return any value
D. cannot be used as the parameters are passed by value

gate2004 compiler-design programming-in-c parameter-passing easy isro2017 runtime-environments

Parameter Passing: GATE2007-IT-33

Consider the program below in a hypothetical language which allows global variable and a choice of call by reference
or call by value methods of parameter passing.

int i ;
program main ()
{
 int j = 60;
 i = 50;
 call f (i, j);

2 Compiler Design (186) 97

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/2616/gate1995-2-4
https://gateoverflow.in/2616
https://gateoverflow.in/tag/gate1995
https://gateoverflow.in/tag/programming
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/easy
https://gateoverflow.in/43575/gate2003-74
https://gateoverflow.in/43575
https://gateoverflow.in/tag/gate2003
https://gateoverflow.in/tag/programming
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/normal
https://gateoverflow.in/999/gate2004-2-isro2017-54
https://gateoverflow.in/999
https://gateoverflow.in/tag/gate2004
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/programming-in-c
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/tag/easy
https://gateoverflow.in/tag/isro2017
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/3466/gate2007-it-33
https://gateoverflow.in/3466
https://gateoverflow.in

2.14.13 https://gateoverflow.in/39701

A. B. C. D.

2.15

2.15.1 https://gateoverflow.in/80295

A. Bottom-up parser. B. Top-down parser.
C. Back tracking parser. D. None of the above.

2.15.2 https://gateoverflow.in/94390

2.15.3 https://gateoverflow.in/87046

2.15.4 https://gateoverflow.in/570

A. FOLLOW(A) and LFOLLOW(A) may
be different.

B. FOLLOW(A) and RFOLLOW(A) are
always the same.

C. All the three sets are identical. D. All the three sets are different.

 print i, j;
}
procedure f (x, y)
{
 i = 100;
 x = 10;
 y = y + i ;
}

Which one of the following options represents the correct output of the program for the two parameter passing mechanisms?

A. Call by value : ; Call by reference :
B. Call by value : ; Call by reference :
C. Call by value : ; Call by reference :
D. Call by value : ; Call by reference :

gate2007-it programming parameter-passing normal compiler-design runtime-environments

Parameter Passing: GATE2016-1-36

What will be the output of the following pseudo-code when parameters are passed by reference and dynamic scoping is
assumed?

a = 3;
void n(x) { x = x * a; print (x); }
void m(y) { a = 1 ; a = y - a; n(a); print (a); }
void main () { m(a); }

gate2016-1 parameter-passing normal

Parsing (48)

Parsing: GATE1987-1-xiv

An operator precedence parser is a

gate1987 compiler-design parsing

Parsing: GATE1988-10ia

Consider the following grammar:

Construct the collection of sets of LR (0) items for this grammar and draw its goto graph.

gate1988 descriptive grammar parsing

Parsing: GATE1989-1-iii

Merging states with a common core may produce __________ conflicts and does not produce ___________ conflicts in
an LALR purser.

gate1989 descriptive compiler-design parsing

Parsing: GATE1992-02,xiii

Choose the correct alternatives (more than one may be correct) and write the corresponding letters only:
For a context free grammar, FOLLOW(A) is the set of terminals that can appear immediately to the right of non-
terminal in some "sentential" form. We define two sets LFOLLOW(A) and RFOLLOW(A) by replacing the word
"sentential" by "left sentential" and "right most sentential" respectively in the definition of FOLLOW (A).

98 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2007-it
https://gateoverflow.in/tag/programming
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/39701/gate2016-1-36
https://gateoverflow.in/39701
https://gateoverflow.in/tag/gate2016-1
https://gateoverflow.in/tag/parameter-passing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/Parsing
https://gateoverflow.in/80295/gate1987-1-xiv
https://gateoverflow.in/80295
https://gateoverflow.in/tag/gate1987
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/94390/gate1988-10ia
https://gateoverflow.in/94390
https://gateoverflow.in/tag/gate1988
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/87046/gate1989-1-iii
https://gateoverflow.in/87046
https://gateoverflow.in/tag/gate1989
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/570/gate1992-02-xiii
https://gateoverflow.in/570
https://gateoverflow.in
samsung
Highlight

2.15.5 https://gateoverflow.in/571

2.15.6 https://gateoverflow.in/2321

2.15.7 https://gateoverflow.in/2643

2.15.8 https://gateoverflow.in/1663

gate1992 parsing compiler-design normal

Parsing: GATE1992-02,xiv

Choose the correct alternatives (more than one may be correct) and write the corresponding letters only:
Consider the and parsing tables for a context free grammar. Which of the following statement
is/are true?

A. The goto part of both tables may be different.
B. The shift entries are identical in both the tables.
C. The reduce entries in the tables may be different.
D. The error entries in tables may be different

gate1992 compiler-design normal parsing

Parsing: GATE1993-25

A simple Pascal like language has only three statements.

i. assignment statement e.g. x:=expression
ii. loop construct e.g. for i:=expression to expression do statement

iii. sequencing e.g. begin statement ;…; statement end

A. Write a context-free grammar (CFG) for statements in the above language. Assume that expression has already been
defined. Do not use optional parenthesis and * operator in CFG.

B. Show the parse tree for the following statements:

for j:=2 to 10 do
begin
 x:=expr1;
 y:=expr2;
end

gate1993 compiler-design parsing normal

Parsing: GATE1995-8

Construct the LL(1) table for the following grammar.

1.
2.
3.
4.
5.
6.
7.
8.
9. $

gate1995 compiler-design parsing normal

Parsing: GATE1998-1.26

Which of the following statements is true?

A. SLR parser is more powerful than LALR
B. LALR parser is more powerful than Canonical LR parser
C. Canonical LR parser is more powerful than LALR parser
D. The parsers SLR, Canonical CR, and LALR have the same power

gate1998 compiler-design parsing normal

2 Compiler Design (186) 99

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate1992
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/normal
https://gateoverflow.in/571/gate1992-02-xiv
https://gateoverflow.in/571
https://gateoverflow.in/tag/gate1992
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/2321/gate1993-25
https://gateoverflow.in/2321
https://gateoverflow.in/tag/gate1993
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2643/gate1995-8
https://gateoverflow.in/2643
https://gateoverflow.in/tag/gate1995
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1663/gate1998-1-26
https://gateoverflow.in/1663
https://gateoverflow.in/tag/gate1998
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in

2.15.9 https://gateoverflow.in/1664

A. lexical analysis B. syntax analysis
C. syntax directed translation D. code optimization

2.15.10 https://gateoverflow.in/1737

2.15.11 https://gateoverflow.in/1470

A. LL (1) B. Canonical LR C. SLR D. LALR

2.15.12 https://gateoverflow.in/642

A. Leftmost derivation B. Leftmost derivation traced out in
reverse

C. Rightmost derivation D. Rightmost derivation traced out in
reverse

2.15.13 https://gateoverflow.in/757

2.15.14 https://gateoverflow.in/875

Parsing: GATE1998-1.27

Type checking is normally done during

gate1998 compiler-design parsing easy

Parsing: GATE1998-22

A. An identifier in a programming language consists of up to six letters and digits of which the first character must be a letter.
Derive a regular expression for the identifier.

B. Build an parsing table for the language defined by the grammar with productions

gate1998 compiler-design parsing descriptive

Parsing: GATE1999-1.17

Which of the following is the most powerful parsing method?

gate1999 compiler-design parsing easy

Parsing: GATE2000-1.19, UGCNET-Dec2013-II-30

Which of the following derivations does a top-down parser use while parsing an input string? The input is assumed to
be scanned in left to right order.

gate2000 compiler-design parsing normal ugcnetdec2013ii

Parsing: GATE2001-16

Consider the following grammar with terminal alphabet and start symbol . The production rules
of the grammar are:

a. Compute the FIRST and FOLLOW sets for and .
b. Complete the LL(1) parse table for the grammar.

gate2001 compiler-design parsing normal

Parsing: GATE2002-22

A. Construct all the parse trees corresponding to for the grammar

B. In this grammar, what is the precedence of the two operators and ?

100 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/1664/gate1998-1-27
https://gateoverflow.in/1664
https://gateoverflow.in/tag/gate1998
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/easy
https://gateoverflow.in/1737/gate1998-22
https://gateoverflow.in/1737
https://gateoverflow.in/tag/gate1998
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/1470/gate1999-1-17
https://gateoverflow.in/1470
https://gateoverflow.in/tag/gate1999
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/easy
https://gateoverflow.in/642/gate2000-1-19-ugcnet-dec2013-ii-30
https://gateoverflow.in/642
https://gateoverflow.in/tag/gate2000
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/ugcnetdec2013ii
https://gateoverflow.in/757/gate2001-16
https://gateoverflow.in/757
https://gateoverflow.in/tag/gate2001
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/875/gate2002-22
https://gateoverflow.in/875
https://gateoverflow.in

2.15.15 https://gateoverflow.in/906

A. Removing left recursion alone B. Factoring the grammar alone
C. Removing left recursion and factoring

the grammar
D. None of the above

2.15.16 https://gateoverflow.in/907

A. is necessarily less than B. is necessarily equal to
C. is necessarily greater than D. None of the above

2.15.17 https://gateoverflow.in/945

A. LL(1) B. SLR(1) but not LL(1)
C. LALR(1) but not SLR(1) D. LR(I) but not LALR(1)

2.15.18 https://gateoverflow.in/1350

A. ambiguous B. left-recursive C. right-recursive D. an operator-grammar

2.15.19 https://gateoverflow.in/1383

A. B.
C. D.

2.15.20 https://gateoverflow.in/1405

C. If only one parse tree is desired for any string in the same language, what changes are to be made so that the resulting
LALR(1) grammar is unambiguous?

gate2002 compiler-design parsing normal descriptive

Parsing: GATE2003-16

Which of the following suffices to convert an arbitrary CFG to an LL(1) grammar?

gate2003 compiler-design parsing easy

Parsing: GATE2003-17

Assume that the SLR parser for a grammar G has states and the LALR parser for G has states. The relationship
between and is

gate2003 compiler-design parsing easy

Parsing: GATE2003-57

Consider the grammar shown below.

This grammar is

gate2003 compiler-design grammar parsing normal

Parsing: GATE2005-14

The grammar is not suitable for predictive-parsing because the grammar is:

gate2005 compiler-design parsing grammar easy

Parsing: GATE2005-60

Consider the grammar:

Let the number of states in SLR (1), LR(1) and LALR(1) parsers for the grammar be and respectively. The
following relationship holds good:

gate2005 compiler-design parsing normal

Parsing: GATE2005-83a

Statement for Linked Answer Questions 83a & 83b:
Consider the following expression grammar. The semantic rules for expression evaluation are stated next to each
grammar production.

2 Compiler Design (186) 101

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2002
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/906/gate2003-16
https://gateoverflow.in/906
https://gateoverflow.in/tag/gate2003
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/easy
https://gateoverflow.in/907/gate2003-17
https://gateoverflow.in/907
https://gateoverflow.in/tag/gate2003
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/easy
https://gateoverflow.in/945/gate2003-57
https://gateoverflow.in/945
https://gateoverflow.in/tag/gate2003
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1350/gate2005-14
https://gateoverflow.in/1350
https://gateoverflow.in/tag/gate2005
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/easy
https://gateoverflow.in/1383/gate2005-60
https://gateoverflow.in/1383
https://gateoverflow.in/tag/gate2005
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1405/gate2005-83a
https://gateoverflow.in/1405
https://gateoverflow.in

2.15.21 https://gateoverflow.in/87037

2.15.22 https://gateoverflow.in/3849

A. B.
C. D.

2.15.23 https://gateoverflow.in/3850

A. B. C. D.

The above grammar and the semantic rules are fed to a yaac tool (which is an LALR(1) parser generator) for parsing and
evaluating arithmetic expressions. Which one of the following is true about the action of yaac for the given grammar?

A. It detects recursion and eliminates recursion
B. It detects reduce-reduce conflict, and resolves
C. It detects shift-reduce conflict, and resolves the conflict in favor of a shift over a reduce action
D. It detects shift-reduce conflict, and resolves the conflict in favor of a reduce over a shift action

gate2005 compiler-design parsing difficult

Parsing: GATE2005-83b

Consider the following expression grammar. The semantic rules for expression evaluation are stated next to each
grammar production.

Assume the conflicts of this question are resolved using yacc tool and an LALR(1) parser is generated for parsing arithmetic
expressions as per the given grammar. Consider an expression . What precedence and associativity properties does
the generated parser realize?

A. Equal precedence and left associativity; expression is evaluated to
B. Equal precedence and right associativity; expression is evaluated to
C. Precedence of ‘ ’ is higher than that of ‘ ’, and both operators are left associative; expression is evaluated to
D. Precedence of ‘ ’ is higher than that of ‘ ’, and both operators are left associative; expression is evaluated to

gate2005 compiler-design parsing normal

Parsing: GATE2005-IT-83a

Consider the context-free grammar

where is the starting symbol, the set of terminals is , and the set of nonterminals is .
Which of the following terminal strings has more than one parse tree when parsed according to the above grammar?

gate2005-it compiler-design grammar parsing easy

Parsing: GATE2005-IT-83b

Consider the context-free grammar

where is the starting symbol, the set of terminals is , and the set of non-terminals is .
For the terminal string , how many parse trees are possible?

gate2005-it compiler-design parsing normal

102 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2005
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/difficult
https://gateoverflow.in/87037/gate2005-83b
https://gateoverflow.in/87037
https://gateoverflow.in/tag/gate2005
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/3849/gate2005-it-83a
https://gateoverflow.in/3849
https://gateoverflow.in/tag/gate2005-it
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/easy
https://gateoverflow.in/3850/gate2005-it-83b
https://gateoverflow.in/3850
https://gateoverflow.in/tag/gate2005-it
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in

2.15.24 https://gateoverflow.in/1836

2.15.25 https://gateoverflow.in/886

A. i and ii B. ii and iii C. i and iii D. None of the above

2.15.26 https://gateoverflow.in/1216

A. Recursive descent parser. B. Operator precedence parser.
C. An LR(k) parser. D. An LALR(k) parser.

2.15.27 https://gateoverflow.in/409

Parsing: GATE2006-58

Consider the following grammar:

In the predictive parser table, M, of the grammar the entries M[S,id] and M[R,$] respectively are

A. and
B. and
C. and
D. and

gate2006 compiler-design parsing normal

Parsing: GATE2006-7

Consider the following grammar

Consider the following LR(0) items corresponding to the grammar above

i.
ii.

iii.

Given the items above, which two of them will appear in the same set in the canonical sets-of-items for the grammar?

gate2006 compiler-design parsing normal

Parsing: GATE2007-18

Which one of the following is a top-down parser?

gate2007 compiler-design parsing normal

Parsing: GATE2008-11

Which of the following describes a handle (as applicable to LR-parsing) appropriately?

A. It is the position in a sentential form where the next shift or reduce operation will occur
B. It is non-terminal whose production will be used for reduction in the next step
C. It is a production that may be used for reduction in a future step along with a position in the sentential form where the next

shift or reduce operation will occur
D. It is the production that will be used for reduction in the next step along with a position in the sentential form where the

right hand side of the production may be found

gate2008 compiler-design parsing normal

2 Compiler Design (186) 103

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/1836/gate2006-58
https://gateoverflow.in/1836
https://gateoverflow.in/tag/gate2006
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/886/gate2006-7
https://gateoverflow.in/886
https://gateoverflow.in/tag/gate2006
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1216/gate2007-18
https://gateoverflow.in/1216
https://gateoverflow.in/tag/gate2007
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/409/gate2008-11
https://gateoverflow.in/409
https://gateoverflow.in/tag/gate2008
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in

2.15.28 https://gateoverflow.in/478

2.15.29 https://gateoverflow.in/3393

A. and B. and C. and D. and

2.15.30 https://gateoverflow.in/1328

A. I and II B. I and IV C. III and IV D. I, III and IV

2.15.31 https://gateoverflow.in/2129

A. B.

C.

D.

2.15.32 https://gateoverflow.in/2181

Parsing: GATE2008-55

An LALR(1) parser for a grammar G can have shift-reduce (S-R) conflicts if and only if

A. The SLR(1) parser for G has S-R conflicts
B. The LR(1) parser for G has S-R conflicts
C. The LR(0) parser for G has S-R conflicts
D. The LALR(1) parser for G has reduce-reduce conflicts

gate2008 compiler-design parsing normal

Parsing: GATE2008-IT-79

 CFG is given with the following productions where is the start symbol, is a non-terminal and a and b are
terminals.

For the string " " how many steps are required to derive the string and how many parse trees are there?

gate2008-it compiler-design context-free-language parsing normal

Parsing: GATE2009-42

Which of the following statements are TRUE?

I. There exist parsing algorithms for some programming languages whose complexities are less than
II. A programming language which allows recursion can be implemented with static storage allocation.

III. No L-attributed definition can be evaluated in the framework of bottom-up parsing.
IV. Code improving transformations can be performed at both source language and intermediate code level.

gate2009 compiler-design parsing normal

Parsing: GATE2011-27

Consider two binary operators and with the precedence of operator being lower than that of the operator .
Operator is right associative while operator is left associative. Which one of the following represents the parse tree
for expression

gate2011 compiler-design parsing normal

Parsing: GATE2012-52

For the grammar below, a partial parsing table is also presented along with the grammar. Entries that need to be
filled are indicated as and . is the empty string, $ indicates end of input, and, separates alternate right
hand sides of productions.

104 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/478/gate2008-55
https://gateoverflow.in/478
https://gateoverflow.in/tag/gate2008
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/3393/gate2008-it-79
https://gateoverflow.in/3393
https://gateoverflow.in/tag/gate2008-it
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/context-free-language
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1328/gate2009-42
https://gateoverflow.in/1328
https://gateoverflow.in/tag/gate2009
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2129/gate2011-27
https://gateoverflow.in/2129
https://gateoverflow.in/tag/gate2011
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2181/gate2012-52
https://gateoverflow.in/2181
https://gateoverflow.in

A.

B.

C.

D.

2.15.33 https://gateoverflow.in/43312

A.

B.

C.

D.

2.15.34 https://gateoverflow.in/1551

The FIRST and FOLLOW sets for the non-terminals and are

gate2012 compiler-design parsing normal

Parsing: GATE2012-53

For the grammar below, a partial parsing table is also presented along with the grammar. Entries that need to be
filled are indicated as and . is the empty string, $ indicates end of input, and, separates alternate right
hand sides of productions.

The appropriate entries for and are

normal gate2012 compiler-design parsing

Parsing: GATE2013-40

Consider the following two sets of LR(1) items of an LR(1) grammar.

Which of the following statements related to merging of the two sets in the corresponding LALR parser is/are FALSE?

1. Cannot be merged since look aheads are different.
2. Can be merged but will result in S-R conflict.
3. Can be merged but will result in R-R conflict.
4. Cannot be merged since goto on c will lead to two different sets.

∅

2 Compiler Design (186) 105

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2012
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/43312/gate2012-53
https://gateoverflow.in/43312
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/gate2012
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/1551/gate2013-40
https://gateoverflow.in/1551
https://gateoverflow.in

A. only B. only
C. and only D. and

2.15.35 https://gateoverflow.in/1418

A. B. C. D.

2.15.36 https://gateoverflow.in/1807

2.15.37 https://gateoverflow.in/8413

A. SLR, LALR B. Canonical LR, LALR
C. SLR, canonical LR D. LALR, canonical LR

2.15.38 https://gateoverflow.in/8488

A. Only S1 B. Only S2 C. Both S1 and S2 D. Neither S1 and S2

2.15.39 https://gateoverflow.in/39697

gate2013 compiler-design parsing normal

Parsing: GATE2013-9

What is the maximum number of reduce moves that can be taken by a bottom-up parser for a grammar with no epsilon
and unit-production (i.e., of type and) to parse a string with tokens?

gate2013 compiler-design parsing normal

Parsing: GATE2014-1-34

A canonical set of items is given below

On input symbol the set has

A. a shift-reduce conflict and a reduce-reduce conflict.
B. a shift-reduce conflict but not a reduce-reduce conflict.
C. a reduce-reduce conflict but not a shift-reduce conflict.
D. neither a shift-reduce nor a reduce-reduce conflict.

gate2014-1 compiler-design parsing normal

Parsing: GATE2015-3-16

Among simple LR (SLR), canonical LR, and look-ahead LR (LALR), which of the following pairs identify the method
that is very easy to implement and the method that is the most powerful, in that order?

gate2015-3 compiler-design parsing normal

Parsing: GATE2015-3-31

Consider the following grammar G

Where , , and are non-terminal symbols, , and are terminal symbols. Which of the following statement(s) is/are
correct?
S1: LL(1) can parse all strings that are generated using grammar G
S2: LR(1) can parse all strings that are generated using grammar G

gate2015-3 compiler-design parsing normal

Parsing: GATE2016-1-45

The attribute of three arithmetic operators in some programming language are given below.

The value of the expression in this language is ________.

106 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2013
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1418/gate2013-9
https://gateoverflow.in/1418
https://gateoverflow.in/tag/gate2013
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1807/gate2014-1-34
https://gateoverflow.in/1807
https://gateoverflow.in/tag/gate2014-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/8413/gate2015-3-16
https://gateoverflow.in/8413
https://gateoverflow.in/tag/gate2015-3
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/8488/gate2015-3-31
https://gateoverflow.in/8488
https://gateoverflow.in/tag/gate2015-3
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/39697/gate2016-1-45
https://gateoverflow.in/39697
https://gateoverflow.in

2.15.40 https://gateoverflow.in/118297

A. B. C. D.

2.15.41 https://gateoverflow.in/118326

2.15.42 https://gateoverflow.in/118343

A. I only B. II only C. III only D. II and III only

2.15.43 https://gateoverflow.in/204112

gate2016-1 compiler-design parsing normal numerical-answers

Parsing: GATE2017-1-17

Consider the following grammar:

What is FOLLOW()?

gate2017-1 compiler-design parsing

Parsing: GATE2017-1-43

Consider the following grammar:

stmt if expr then expr else expr; stmt |
expr term relop term | term
term id | number
id a | b | c
number

where relop is a relational operator (e.g.. ). refers to the empty statement, and if, then, else are terminals.
Consider a program following the above grammar containing ten if terminals. The number of control flow paths in
is________ . For example. the program
if then else
has control flow paths. and .

gate2017-1 compiler-design parsing normal numerical-answers

Parsing: GATE2017-2-6

Which of the following statements about parser is/are CORRECT?

I. Canonical LR is more powerful than SLR
II. SLR is more powerful than LALR

III. SLR is more powerful than Canonical LR

gate2017-2 compiler-design parsing

Parsing: GATE2018-38

Consider the following parse tree for the expression a#b c d#e#f, involving two binary operators and #.

Which one of the following is correct for the given parse tree?

A. $ has higher precedence and is left associative; # is right associative
B. # has higher precedence and is left associative; $ is right associative
C. $ has higher precedence and is left associative; # is left associative
D. $ has higher precedence and is right associative; # is left associative

gate2018 compiler-design parsing normal

2 Compiler Design (186) 107

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2016-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/numerical-answers
https://gateoverflow.in/118297/gate2017-1-17
https://gateoverflow.in/118297
https://gateoverflow.in/tag/gate2017-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/118326/gate2017-1-43
https://gateoverflow.in/118326
https://gateoverflow.in/tag/gate2017-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/numerical-answers
https://gateoverflow.in/118343/gate2017-2-6
https://gateoverflow.in/118343
https://gateoverflow.in/tag/gate2017-2
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/204112/gate2018-38
https://gateoverflow.in/204112
https://gateoverflow.in/tag/gate2018
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in

2.15.44 https://gateoverflow.in/302829

2.15.45 https://gateoverflow.in/302845

A. Leftmost B. Leftmost in reverse
C. Rightmost D. Rightmost in reverse

2.15.46 https://gateoverflow.in/25215

2.15.47 https://gateoverflow.in/25108

A. Expression (i) B. Expression (ii)
C. Expression (iv) only D. Expression (ii), (iii), and (iv)
E. Expression (iii) and (iv) only

Parsing: GATE2019-19

Consider the grammar given below:

Let and be indexed as follows:

Compute the FOLLOW set of the non-terminal B and write the index values for the symbols in the FOLLOW set in the
descending order.(For example, if the FOLLOW set is , then the answer should be)

gate2019 numerical-answers compiler-design parsing

Parsing: GATE2019-3

Which one of the following kinds of derivation is used by LR parsers?

gate2019 compiler-design parsing

Parsing: TIFR2012-B-17

Which of the following correctly describes parsing?

A. The input string is alternately scanned left to right and right to left with reversals.
B. Input string is scanned once left to right with rightmost derivation and symbol look-ahead.
C. grammers are expressively as powerful as context-free grammers.
D. Parser makes left-to-right passes over input string.
E. Input string is scanned from left to right once with symbol to the right as look-ahead to give left-most derivation.

tifr2012 compiler-design parsing

Parsing: TIFR2012-B-8

Consider the parse tree

Assume that has higher precedence than , and operators associate right to left (i.e .
Consider

i.
ii.

iii.
iv.

The parse tree corresponds to

108 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/302829/gate2019-19
https://gateoverflow.in/302829
https://gateoverflow.in/tag/gate2019
https://gateoverflow.in/tag/numerical-answers
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/302845/gate2019-3
https://gateoverflow.in/302845
https://gateoverflow.in/tag/gate2019
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/25215/tifr2012-b-17
https://gateoverflow.in/25215
https://gateoverflow.in/tag/tifr2012
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/25108/tifr2012-b-8
https://gateoverflow.in/25108
https://gateoverflow.in

2.15.48 https://gateoverflow.in/30079

a.
b.

c.
d.

e.

2.16

2.16.1 https://gateoverflow.in/2138

A. B. C. D.

2.16.2 https://gateoverflow.in/118746

tifr2012 compiler-design parsing

Parsing: TIFR2015-B-15

Consider the following grammar (the start symbol is) for generating expressions.

With respect to this grammar, which of the following trees is the valid evaluation tree for the expression
?

tifr2015 parsing

Register Allocation (2)

Register Allocation: GATE2011-36

Consider evaluating the following expression tree on a machine with load-store architecture in which memory can be
accessed only through load and store instructions. The variables and are initially stored in memory. The
binary operators used in this expression tree can be evaluated by the machine only when operands are in registers. The
instructions produce result only in a register. If no intermediate results can be stored in memory, what is the minimum number
of registers needed to evaluate this expression?

gate2011 compiler-design register-allocation normal

Register Allocation: GATE2017-1-52

Consider the expression . Let be the minimum number of registers required by
an optimal code generation (without any register spill) algorithm for a load/store architecture, in which

A. only load and store instructions can have memory operands and
B. arithmetic instructions can have only register or immediate operands. The value of is _____________ .

2 Compiler Design (186) 109

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/tifr2012
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/30079/tifr2015-b-15
https://gateoverflow.in/30079
https://gateoverflow.in/tag/tifr2015
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/Register+Allocation
https://gateoverflow.in/2138/gate2011-36
https://gateoverflow.in/2138
https://gateoverflow.in/tag/gate2011
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/register-allocation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/118746/gate2017-1-52
https://gateoverflow.in/118746
https://gateoverflow.in

2.17

2.17.1 https://gateoverflow.in/93966

2.17.2 https://gateoverflow.in/89636

2.17.3 https://gateoverflow.in/89082

2.17.4 https://gateoverflow.in/83980

gate2017-1 compiler-design register-allocation normal numerical-answers

Runtime Environments (18)

Runtime Environments: GATE1988-2xii

Consider the following program skeleton and below figure which shows activation records of procedures involved in
the calling sequence.

Write the access links of the activation records to enable correct access and variables in the procedures from other procedures
involved in the calling sequence

procedure p;
 procedure q;
 procedure r;
 begin
 q
 end r;
 begin
 r
 end q;
 procedure s;
 begin
 q
 end s;
 begin
 s
 end p;

gate1988 normal descriptive runtime-environments compiler-design

Runtime Environments: GATE1989-10a

Will recursion work correctly in a language with static allocation of all variables? Explain.

gate1989 descriptive compiler-design runtime-environments

Runtime Environments: GATE1989-8b

Indicate the result of the following program if the language uses (i) static scope rules and (ii) dynamic scope rules.

 var x, y:integer;
 procedure A (var z:integer);
 var x:integer;
 begin x:=1; B; z:= x end;
 procedure B;
 begin x:=x+1 end;
 begin
 x:=5; A(y); write (y)
...end.

gate1989 descriptive compiler-design runtime-environments

Runtime Environments: GATE1990-2-v

Match the pairs in the following questions:

110 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2017-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/register-allocation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/numerical-answers
https://gateoverflow.in/tag/Runtime+Environments
https://gateoverflow.in/93966/gate1988-2xii
https://gateoverflow.in/93966
https://gateoverflow.in/tag/gate1988
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/89636/gate1989-10a
https://gateoverflow.in/89636
https://gateoverflow.in/tag/gate1989
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/89082/gate1989-8b
https://gateoverflow.in/89082
https://gateoverflow.in/tag/gate1989
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/83980/gate1990-2-v
https://gateoverflow.in/83980
https://gateoverflow.in

2.17.5 https://gateoverflow.in/85394

2.17.6 https://gateoverflow.in/2295

A. text editor B. assembler C. linker D. loader E. none of the above

2.17.7 https://gateoverflow.in/2601

2.17.8 https://gateoverflow.in/2226

A. that support recursion B. that support dynamic data structure
C. that use dynamic scope rules D. None of the above

2.17.9 https://gateoverflow.in/2224

2.17.10 https://gateoverflow.in/1662

A. Assembler B. Linker C. Loader D. Compiler

gate1990 match-the-following compiler-design runtime-environments recursion

Runtime Environments: GATE1990-4-v

State whether the following statements are TRUE or FALSE with reason:

The Link-load-and-go loading scheme required less storage space than the link-and-go loading scheme.

gate1990 true-false compiler-design runtime-environments

Runtime Environments: GATE1993-7.7

A part of the system software which under all circumstances must reside in the main memory is:

gate1993 compiler-design runtime-environments easy

Runtime Environments: GATE1995-1.14

A linker is given object modules for a set of programs that were compiled separately. What information need to be
included in an object module?

A. Object code
B. Relocation bits
C. Names and locations of all external symbols defined in the object module
D. Absolute addresses of internal symbols

gate1995 compiler-design runtime-environments normal

Runtime Environments: GATE1997-1.10

Heap allocation is required for languages.

gate1997 compiler-design easy runtime-environments

Runtime Environments: GATE1997-1.8

A language allows declaration of arrays whose sizes are not known during compilation. It is required to make
efficient use of memory. Which one of the following is true?

A. A compiler using static memory allocation can be written for
B. A compiler cannot be written for ; an interpreter must be used
C. A compiler using dynamic memory allocation can be written for
D. None of the above

gate1997 compiler-design easy runtime-environments

Runtime Environments: GATE1998-1.25, ISRO2008-41

In a resident – OS computer, which of the following systems must reside in the main memory under all situations?

2 Compiler Design (186) 111

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate1990
https://gateoverflow.in/tag/match-the-following
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/recursion
https://gateoverflow.in/85394/gate1990-4-v
https://gateoverflow.in/85394
https://gateoverflow.in/tag/gate1990
https://gateoverflow.in/tag/true-false
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/2295/gate1993-7-7
https://gateoverflow.in/2295
https://gateoverflow.in/tag/gate1993
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/easy
https://gateoverflow.in/2601/gate1995-1-14
https://gateoverflow.in/2601
https://gateoverflow.in/tag/gate1995
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2226/gate1997-1-10
https://gateoverflow.in/2226
https://gateoverflow.in/tag/gate1997
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/easy
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/2224/gate1997-1-8
https://gateoverflow.in/2224
https://gateoverflow.in/tag/gate1997
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/easy
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/1662/gate1998-1-25-isro2008-41
https://gateoverflow.in/1662
https://gateoverflow.in

2.17.11 https://gateoverflow.in/1665

A. B.
C. D.

2.17.12 https://gateoverflow.in/1687

A. stack B. heap C. display D. activation tree

2.17.13 https://gateoverflow.in/710

A. Assembly B. parsing C. Relocation D. Symbol resolution

2.17.14 https://gateoverflow.in/477

A. II and V only B. I, III and IV only C. I, II and V only D. II, III and V only

2.17.15 https://gateoverflow.in/2187

A. Those that support recursion. B. Those that use dynamic scoping.
C. Those that allow dynamic data

structure.
D. Those that use global variables.

2.17.16 https://gateoverflow.in/1758

gate1998 compiler-design runtime-environments normal isro2008

Runtime Environments: GATE1998-1.28

A linker reads four modules whose lengths are and words, respectively. If they are loaded in that
order, what are the relocation constants?

gate1998 compiler-design runtime-environments normal

Runtime Environments: GATE1998-2.15

Faster access to non-local variables is achieved using an array of pointers to activation records called a

gate1998 programming compiler-design normal runtime-environments

Runtime Environments: GATE2001-1.17

The process of assigning load addresses to the various parts of the program and adjusting the code and the data in the
program to reflect the assigned addresses is called

gate2001 compiler-design runtime-environments easy

Runtime Environments: GATE2008-54

Which of the following are true?

I. A programming language which does not permit global variables of any kind and has no nesting of procedures/functions,
but permits recursion can be implemented with static storage allocation

II. Multi-level access link (or display) arrangement is needed to arrange activation records only if the programming language
being implemented has nesting of procedures/functions

III. Recursion in programming languages cannot be implemented with dynamic storage allocation
IV. Nesting procedures/functions and recursion require a dynamic heap allocation scheme and cannot be implemented with a

stack-based allocation scheme for activation records
V. Programming languages which permit a function to return a function as its result cannot be implemented with a stack-based

storage allocation scheme for activation records

gate2008 compiler-design difficult runtime-environments

Runtime Environments: GATE2010-14

Which languages necessarily need heap allocation in the runtime environment?

gate2010 compiler-design easy runtime-environments

Runtime Environments: GATE2012-36

Consider the program given below, in a block-structured pseudo-language with lexical scoping and nesting of
procedures permitted.

Program main;
 Var ...

 Procedure A1;
 Var ...
 Call A2;
 End A1

 Procedure A2;

112 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate1998
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/isro2008
https://gateoverflow.in/1665/gate1998-1-28
https://gateoverflow.in/1665
https://gateoverflow.in/tag/gate1998
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1687/gate1998-2-15
https://gateoverflow.in/1687
https://gateoverflow.in/tag/gate1998
https://gateoverflow.in/tag/programming
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/710/gate2001-1-17
https://gateoverflow.in/710
https://gateoverflow.in/tag/gate2001
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/easy
https://gateoverflow.in/477/gate2008-54
https://gateoverflow.in/477
https://gateoverflow.in/tag/gate2008
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/difficult
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/2187/gate2010-14
https://gateoverflow.in/2187
https://gateoverflow.in/tag/gate2010
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/easy
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/1758/gate2012-36
https://gateoverflow.in/1758
https://gateoverflow.in
samsung
Highlight

2.17.17 https://gateoverflow.in/1975

A. Dynamic memory allocation B. Type checking
C. Symbol table management D. Inline expansion

2.17.18 https://gateoverflow.in/2052

A. and only B. and only C. and only D. and only

2.18

2.18.1 https://gateoverflow.in/39675

 Var ...

 Procedure A21;
 Var ...
 Call A1;
 End A21

 Call A21;
 End A2

 Call A1;
End main.

Consider the calling chain:
The correct set of activation records along with their access links is given by:

gate2012 compiler-design runtime-environments normal

Runtime Environments: GATE2014-2-18

Which one of the following is NOT performed during compilation?

gate2014-2 compiler-design easy runtime-environments

Runtime Environments: GATE2014-3-18

Which of the following statements are CORRECT?

1. Static allocation of all data areas by a compiler makes it impossible to implement recursion.
2. Automatic garbage collection is essential to implement recursion.
3. Dynamic allocation of activation records is essential to implement recursion.
4. Both heap and stack are essential to implement recursion.

gate2014-3 compiler-design runtime-environments normal

Static Single Assignment (2)

Static Single Assignment: GATE2016-1-19

Consider the following code segment.

x = u - t;
y = x * v;
x = y + w;
y = t - z;
y = x * y;

The minimum number of total variables required to convert the above code segment to static single assignment form is

2 Compiler Design (186) 113

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2012
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1975/gate2014-2-18
https://gateoverflow.in/1975
https://gateoverflow.in/tag/gate2014-2
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/easy
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/2052/gate2014-3-18
https://gateoverflow.in/2052
https://gateoverflow.in/tag/gate2014-3
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/runtime-environments
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/Static+Single+Assignment
https://gateoverflow.in/39675/gate2016-1-19
https://gateoverflow.in/39675
https://gateoverflow.in

2.18.2 https://gateoverflow.in/118292

A. p1 = a - b

q1 = p1 * c

p1 = u * v

q1 = p1 + q1

B. p3 = a - b

q4 = p3 * c

p4 = u * v

q5 = p4 + q4

C. p1 = a - b

q1 = p2 * c

p3 = u * v

q2 = p4 + q3

D. p1 = a - b

q1 = p * c

p2 = u * v

q2 = p + q

2.19

2.19.1 https://gateoverflow.in/590

2.19.2 https://gateoverflow.in/2622

A. B. C. D.

2.19.3 https://gateoverflow.in/2772

__________.

gate2016-1 compiler-design static-single-assignment normal numerical-answers

Static Single Assignment: GATE2017-1-12

Consider the following intermediate program in three address code

p = a - b
q = p * c
p = u * v
q = p + q

Which one of the following corresponds to a static single assignment form of the above code?

gate2017-1 compiler-design intermediate-code normal static-single-assignment

Syntax Directed Translation (9)

Syntax Directed Translation: GATE1992-11a

Write syntax directed definitions (semantic rules) for the following grammar to add the type of each identifier to its
entry in the symbol table during semantic analysis. Rewriting the grammar is not permitted and semantic rules are to be
added to the ends of productions only.

gate1992 compiler-design syntax-directed-translation normal

Syntax Directed Translation: GATE1995-2.10

A shift reduce parser carries out the actions specified within braces immediately after reducing with the corresponding
rule of grammar

What is the translation of using the syntax directed translation scheme described by the above rules?

gate1995 compiler-design grammar syntax-directed-translation normal

Syntax Directed Translation: GATE1996-20

Consider the syntax-directed translation schema (SDTS) shown below:

 {print “+”}
 {print “.”}

 {print id.name}

An LR-parser executes the actions associated with the productions immediately after a reduction by the corresponding
production. Draw the parse tree and write the translation for the sentence.

114 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2016-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/static-single-assignment
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/numerical-answers
https://gateoverflow.in/118292/gate2017-1-12
https://gateoverflow.in/118292
https://gateoverflow.in/tag/gate2017-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/intermediate-code
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/static-single-assignment
https://gateoverflow.in/tag/Syntax+Directed+Translation
https://gateoverflow.in/590/gate1992-11a
https://gateoverflow.in/590
https://gateoverflow.in/tag/gate1992
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/syntax-directed-translation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2622/gate1995-2-10
https://gateoverflow.in/2622
https://gateoverflow.in/tag/gate1995
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/grammar
https://gateoverflow.in/tag/syntax-directed-translation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2772/gate1996-20
https://gateoverflow.in/2772
https://gateoverflow.in

2.19.4 https://gateoverflow.in/1738

2.19.5 https://gateoverflow.in/690

2.19.6 https://gateoverflow.in/758

2.19.7 https://gateoverflow.in/908

A. always be evaluated B. be evaluated only if the definition is
L-attributed

C. be evaluated only if the definition has
synthesized attributes

D. never be evaluated

, using SDTS given above.

gate1996 compiler-design syntax-directed-translation normal

Syntax Directed Translation: GATE1998-23

Let the attribute ‘ ’ give the value of a binary number generated by in the following grammar:

For example, an input gives
Construct a syntax directed translation scheme using only synthesized attributes, to determine .

gate1998 compiler-design syntax-directed-translation normal descriptive

Syntax Directed Translation: GATE2000-19

Consider the syntax directed translation scheme (SDTS) given in the following. Assume attribute evaluation with
bottom-up parsing, i.e., attributes are evaluated immediately after a reduction.
E E * T {E.val = E .val * T.val}
 E T {E.val = T.val}
T F - T {T.val = F.val - T .val}
 T F {T.val = F.val}
 F 2 {F.val = 2}
 F 4 {F.val = 4}

A. Using this SDTS, construct a parse tree for the expression and also compute its .
B. It is required to compute the total number of reductions performed to parse a given input. Using synthesized attributes only,

modify the SDTS given, without changing the grammar, to find , the number of reductions performed while
reducing an input to .

gate2000 compiler-design syntax-directed-translation normal descriptive

Syntax Directed Translation: GATE2001-17

The syntax of the repeat-until statement is given by the following grammar

where E stands for expressions, and stand for statements. The non-terminals and have an attribute code that
represents generated code. The non-terminal E has two attributes. The attribute code represents generated code to evaluate the
expression and store its value in a distinct variable, and the attribute varName contains the name of the variable in which the
truth value is stored. The truth-value stored in the variable is 1 if E is true, 0 if E is false.

Give a syntax-directed definition to generate three-address code for the repeat-until statement. Assume that you can call a
function newlabel() that returns a distinct label for a statement. Use the operator '\\' to concatenate two strings and the function
gen(s) to generate a line containing the string s.

gate2001 compiler-design syntax-directed-translation normal descriptive

Syntax Directed Translation: GATE2003-18

In a bottom-up evaluation of a syntax directed definition, inherited attributes can

gate2003 compiler-design syntax-directed-translation normal

2 Compiler Design (186) 115

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate1996
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/syntax-directed-translation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/1738/gate1998-23
https://gateoverflow.in/1738
https://gateoverflow.in/tag/gate1998
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/syntax-directed-translation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/690/gate2000-19
https://gateoverflow.in/690
https://gateoverflow.in/tag/gate2000
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/syntax-directed-translation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/758/gate2001-17
https://gateoverflow.in/758
https://gateoverflow.in/tag/gate2001
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/syntax-directed-translation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/descriptive
https://gateoverflow.in/908/gate2003-18
https://gateoverflow.in/908
https://gateoverflow.in/tag/gate2003
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/syntax-directed-translation
https://gateoverflow.in/tag/normal
https://gateoverflow.in

2.19.8 https://gateoverflow.in/39700

A. B.
C. D. syntax error

2.19.9 https://gateoverflow.in/302812

2.20

2.20.1 https://gateoverflow.in/2250

A. is ‘ ’ or ‘ ’ B. is ‘ ’ or ‘ ’
C. is ‘ ’ or ‘ ’ D. not possible to evaluate without storing

2.20.2 https://gateoverflow.in/947

Syntax Directed Translation: GATE2016-1-46

Consider the following Syntax Directed Translation Scheme , with non-terminals and terminals
.

Using the above , the output printed by a bottom-up parser, for the input is:

gate2016-1 compiler-design syntax-directed-translation normal

Syntax Directed Translation: GATE2019-36

Consider the following grammar and the semantic actions to support that inherited type declaration attributes. Let
, and be the placeholders for the non-terminals or in the following table:

Which one of the following are appropriate choices for and ?

A.
B.
C.
D.

gate2019 compiler-design syntax-directed-translation

Target Code Generation (4)

Target Code Generation: GATE1997-4.9

The expression
where ‘op’ is one of ‘ ’, ‘ ’ and ‘ ’ (exponentiation) can be evaluated on a CPU with single register without storing
the value of () if

gate1997 compiler-design target-code-generation register-allocation normal

Target Code Generation: GATE2003-59

Consider the syntax directed definition shown below.

Here, is a function that generates the output code, and is a function that returns the name of a new temporary
variable on every call. Assume that ti's are the temporary variable names generated by . For the statement ‘

’, the -address code sequence generated by this definition is

116 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/39700/gate2016-1-46
https://gateoverflow.in/39700
https://gateoverflow.in/tag/gate2016-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/syntax-directed-translation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/302812/gate2019-36
https://gateoverflow.in/302812
https://gateoverflow.in/tag/gate2019
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/syntax-directed-translation
https://gateoverflow.in/tag/Target+Code+Generation
https://gateoverflow.in/2250/gate1997-4-9
https://gateoverflow.in/2250
https://gateoverflow.in/tag/gate1997
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/target-code-generation
https://gateoverflow.in/tag/register-allocation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/947/gate2003-59
https://gateoverflow.in/947
https://gateoverflow.in

A. B.
C. D.

2.20.3 https://gateoverflow.in/4069

2.20.4 https://gateoverflow.in/2338

A. B. C. D.

2.21

2.21.1 https://gateoverflow.in/80373

A. B. C. D. None of the above.

gate2003 compiler-design target-code-generation normal

Target Code Generation: GATE2004-10

Consider the grammar rule for arithmetic expressions. The code generated is targeted to a CPU having a
single user register. The subtraction operation requires the first operand to be in the register. If and do not have
any com ​mon sub expression, in order to get the shortest possible code

A. should be evaluated first
B. should be evaluated first
C. Evaluation of and should necessarily be interleaved
D. Order of evaluation of and is of no consequence

gate2004 compiler-design target-code-generation normal

Target Code Generation: GATE2010-37

The program below uses six temporary variables .

a = 1
b = 10
c = 20
d = a + b
e = c + d
f = c + e
b = c + e
e = b + f
d = 5 + e
return d + f

Assuming that all operations take their operands from registers, what is the minimum number of registers needed to execute
this program without spilling?

gate2010 compiler-design target-code-generation register-allocation normal

Variable Scope (2)

Variable Scope: GATE1987-1-xix

Study the following program written in a block-structured language:

Var x, y:interger;
procedure P(n:interger);
begin
 x:=(n+2)/(n-3);
end;

procedure Q
Var x, y:interger;
begin
 x:=3;
 y:=4;
 P(y);
 Write(x) __(1)
end;

begin
 x:=7;
 y:=8;
 Q;
Write(x); __(2)
end.

What will be printed by the write statements marked (1) and (2) in the program if the variables are statically scoped?

gate1987 compiler-design variable-scope

2 Compiler Design (186) 117

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/tag/gate2003
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/target-code-generation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/4069/gate2004-10
https://gateoverflow.in/4069
https://gateoverflow.in/tag/gate2004
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/target-code-generation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/2338/gate2010-37
https://gateoverflow.in/2338
https://gateoverflow.in/tag/gate2010
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/target-code-generation
https://gateoverflow.in/tag/register-allocation
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/Variable+Scope
https://gateoverflow.in/80373/gate1987-1-xix
https://gateoverflow.in/80373
https://gateoverflow.in/tag/gate1987
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/variable-scope
https://gateoverflow.in

2.21.2 https://gateoverflow.in/80374

A. B. C. D. None of the above

2.22

2.22.1 https://gateoverflow.in/8187

Variable Scope: GATE1987-1-xx

For the program given below what will be printed by the write statements marked (1) and (2) in the program if the
variables are dynamically scoped?

Var x, y:interger;
procedure P(n:interger);
begin
 x := (n+2)/(n-3);
end;

procedure Q
Var x, y:interger;
begin
 x:=3;
 y:=4;
 P(y);
 Write(x); __(1)
end;

begin
 x:=7;
 y:=8;
 Q;
 Write(x); __(2)
end.

gate1987 compiler-design variable-scope

Viable Prefix (1)

Viable Prefix: GATE2015-1-13

Which one of the following is TRUE at any valid state in shift-reduce parsing?

A. Viable prefixes appear only at the bottom of the stack and not inside
B. Viable prefixes appear only at the top of the stack and not inside
C. The stack contains only a set of viable prefixes
D. The stack never contains viable prefixes

gate2015-1 compiler-design parsing normal viable-prefix

118 2 Compiler Design (186)

© Copyright GATE Overflow. All rights reserved.

https://gateoverflow.in/80374/gate1987-1-xx
https://gateoverflow.in/80374
https://gateoverflow.in/tag/gate1987
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/variable-scope
https://gateoverflow.in/tag/Viable+Prefix
https://gateoverflow.in/8187/gate2015-1-1-3
https://gateoverflow.in/8187
https://gateoverflow.in/tag/gate2015-1
https://gateoverflow.in/tag/compiler-design
https://gateoverflow.in/tag/parsing
https://gateoverflow.in/tag/normal
https://gateoverflow.in/tag/viable-prefix
https://gateoverflow.in

	2 Compiler Design (186)
	2.1 Abstract Syntax Tree (1)
	2.2 Assembler (7)
	2.3 Code Optimization (4)
	2.4 Compilation Phases (8)
	2.5 Expression Evaluation (2)
	2.6 Grammar (41)
	2.7 Infix Postfix (1)
	2.8 Intermediate Code (8)
	2.9 Left Recursion (1)
	2.10 Lexical Analysis (6)
	2.11 Linking (3)
	2.12 Live Variable (1)
	2.13 Macros (4)
	2.14 Parameter Passing (13)
	2.15 Parsing (48)
	2.16 Register Allocation (2)
	2.17 Runtime Environments (18)
	2.18 Static Single Assignment (2)
	2.19 Syntax Directed Translation (9)
	2.20 Target Code Generation (4)
	2.21 Variable Scope (2)
	2.22 Viable Prefix (1)

